Did you see that thing? An eye tracking study on the reliability of selfreported awareness measures

Bill Albert, Design and Usability Center, Bentley University

Donna Tedesco, Fidelity Investments

#### **Research Questions**

- Usability professionals often asked participants if they noticed a particular object
  - Is this feedback reliable?
  - If so, are there certain situations in which it is more/less reliable?
- Implications for how we ask participants questions, and the need for eye tracking technology as part of basic usability testing

# Background Research

#### Guan et al (2006)

- RTA was validated with eye movement data
- Omissions occurred 47% of the time
- Johansen & Hansen (2006)
  - Participants recollection of elements were valid about 70% of the time
  - Images, text, and navigation was recollected more than 70% of the time, logos only 30% of the time

#### Methods

- Half of the participants (n=40) were calibrated with eye tracker, the other half (n=40) were not
  - Is there an impact of the technology on what people report?
- Shown a series of popular website home pages for 7 seconds (study page), followed by a test page
- Test page includes two objects highlighted
  - Objects are images, navigation, or functional based

#### Experiments

#### Experiment 1

- 40 participants asked "Did you notice this object"?
- 3-point scale (1 = definitely did not notice; 2 = not sure; 3=definitely noticed)
- Half were eye tracked (n=20); half not eye tracked (n=20)

#### Experiment 2

- 40 participants asked "How much time did you spend looking at this object?"
- 5-point scale (1 = no time looking at object ... 5 = a long time looking at object)
- Half were eye tracked (n=20); half not eye tracked (n=20)

| Eye Tracking Condition | Expt. 1 ("Did you notice") | Expt. 2 ("How much time") |
|------------------------|----------------------------|---------------------------|
| Yes (ET)               | 20 participants            | 20 participants           |
| No (NET)               | 20 participants            | 20 participants           |

### Example of Study/Test Page



#### Memory Test



# **Impact of Eye-Tracking**



#### **Fixation Counts**



Results indicate that what participants report is initially supported by eye movement data There were significantly more fixations for those that reported "definitely saw" top-2 box



#### Gaze Duration



100

0

Bottom 2 Box

Ü Avg

counts, self-reported awareness has some basis in the eye movement data

Top 2 Box

#### **Response Outcomes**

| Responses                                                     | Errors                               | Success                                    |
|---------------------------------------------------------------|--------------------------------------|--------------------------------------------|
| Definitely saw (Expt. 1) or top<br>2 box (Expt. 2)            | False alarm (gaze duration =<br>0ms) | Hit (gaze duration > 250 ms)               |
| Definitely did not see (Expt. 1)<br>or bottom 2 box (Expt. 2) | Miss (gaze duration > 500 ms)        | Correct rejection (gaze duration < 250 ms) |

#### **Experiment 1**

| Responses              | Errors              | Success                   |
|------------------------|---------------------|---------------------------|
| Definitely saw         | 10.2% (false alarm) | 28.2% (hit)               |
| Definitely did not see | 4.8% (miss)         | 27.0% (correct rejection) |

#### **Experiment 2**

| Responses    | Errors             | Success                   |
|--------------|--------------------|---------------------------|
| Top 2 box    | 4.8% (false alarm) | 11.7% (hit)               |
| Bottom 2 box | 12.6% (miss)       | 22.1% (correct rejection) |

# **Object Types**



Functional-based elements have higher false alarm rates than other element types No statistical differences between the three types of elements (Expt 1)



## **Results of Memory Test**

Surprising how many participant had a false recollection

But, a more continuous question gives participants more leeway in how they respond

| Response                      | Percent |
|-------------------------------|---------|
| Definitely saw (Experiment 1) | 26.8%   |
| Top 2 box (Experiment 2)      | 8.9%    |

#### False Alarms Make Sense

#### A false alarm scenario

- The design team wants to test if a particular object is noticed
- During a usability evaluation they ask participants whether or not they noticed a particular object
- Some participants may say they noticed the object, but did not
- The design team incorrectly concludes that the object is visually prominent enough, and no steps are required to increase its visual prominence
- False alarm scenarios happen and should be avoided

#### Misses Don't Make Sense

#### A*miss* scenario

- The design team wants to make sure an object is NOT noticed
- They run a usability evaluation, and ask the participants if they noticed a particular object
- Some of the participants report not seeing the object, whereas they actually did notice it
- The design team incorrectly concludes that the object is well hidden, and they don't need to make it less prominent

#### How common is this?

### False Alarms Give Us Hope

- In Experiment 1, there was a false alarm rate of about 10%
- In Experiment 2, there was a false alarm rate of 5%
- Navigation and image-based elements had a lower false alarm rate in both experiments
- Is this an acceptable error rate?

# Other Side of Coin

- Experiment 1 confirmed 55% of responses
  - 28% hit rate (said they saw when they really did)
  - 27% correct rejection (said they did not see, when they did not look)
- Experiment 2 confirmed only 34% of responses
  - 12% hit rate
  - 22% correct rejections
- If you want to be sure they saw something, ask a more discrete question about awareness

# **Study Limitations**

- Mind's-eye hypothesis
- No tasks were given, only orientation to the home pages
- Did not control for level of familiarity

# **Study Conclusions**

- Usability practitioners should feel confident in collecting selfreported awareness measures from participants. They will not draw an incorrect conclusion more than 10% of the time.
- If a practitioner wants to minimize the chance of making an incorrect conclusion, they should use a continuous (5- or 7point) scale for self-reported awareness
- If a practitioner wants to maximize the likelihood of confirming that a participant did or did not see an element, they should use a discrete set of questions for self reported awareness
- Participants are more reliable in their self-reported awareness for navigation and image elements, than functional elements, regardless of question structure.

## Take Home Message

- Think about how you ask an awareness question
- Be careful how you interpret their response
- Eye tracking still VERY useful as part of UX research - it all depends on the question you are asking!

### Thank You!

#### Full article:

Reliability of Self-Reported Awareness Measures Based on Eye Tracking, Journal of Usability Studies, 5(2), 50-64

http://www.upassoc.org/upa\_publications/jus/

#### Questions or praise

Bill Albert (<u>walbert@bentley.edu</u>)

Donna Tedesco (<u>Donna.Tedesco@fmr.com</u>)